Strictly Positive-Definite Spike Train Kernels for Point-Process Divergences

نویسندگان

  • Il Park
  • Sohan Seth
  • Murali Rao
  • José Carlos Príncipe
چکیده

Exploratory tools that are sensitive to arbitrary statistical variations in spike train observations open up the possibility of novel neuroscientific discoveries. Developing such tools, however, is difficult due to the lack of Euclidean structure of the spike train space, and an experimenter usually prefers simpler tools that capture only limited statistical features of the spike train, such as mean spike count or mean firing rate. We explore strictly positive-definite kernels on the space of spike trains to offer both a structural representation of this space and a platform for developing statistical measures that explore features beyond count or rate. We apply these kernels to construct measures of divergence between two point processes and use them for hypothesis testing, that is, to observe if two sets of spike trains originate from the same underlying probability law. Although there exist positive-definite spike train kernels in the literature, we establish that these kernels are not strictly definite and thus do not induce measures of divergence. We discuss the properties of both of these existing nonstrict kernels and the novel strict kernels in terms of their computational complexity, choice of free parameters, and performance on both synthetic and real data through kernel principal component analysis and hypothesis testing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly positive definite kernels on subsets of the complex plane

In this paper we seek for inner product dependent strictly positive definite kernels on subsets of C. We present separated necessary and sufficient conditions in order that a positive definite kernel on C be strictly positive definite. One emphasis is on strictly positive definite kernels on the unit circle. Since positive definite kernels on the circle were already characterized in [1], the st...

متن کامل

A Reproducing Kernel Hilbert Space Framework for Spike Train Signal Processing

This letter presents a general framework based on reproducing kernel Hilbert spaces (RKHS) to mathematically describe and manipulate spike trains. The main idea is the definition of inner products to allow spike train signal processing from basic principles while incorporating their statistical description as point processes. Moreover, because many inner products can be formulated, a particular...

متن کامل

Estimating Conditional Intensity Function of a Neural Spike Train by Particle Markov Chain Monte Carlo and Smoothing

Understanding neural activities is fundamental and challenging in decoding how the brain processes information. An essential part of the problem is to define a meaningful and quantitative characterization of neural activities when they are represented by a sequence of action potentials or a neural spike train. The thesis approaches to use a point process to represent a neural spike train, and s...

متن کامل

A Statistical Approach to Functional Connectivity Involving Multichannel Neural Spike Trains

RUIWEN ZHANG : A Statistical Approach to Functional Connectivity Involving Multichannel Neural Spike Trains. (Under the direction of Young K. Truong and Haipeng Shen.) The advent of the multi-electrode has made it feasible to record spike trains simultaneously from several neurons. However, the statistical techniques for analyzing large-scale simultaneously recorded spike train data have not de...

متن کامل

Linking non-binned spike train kernels to several existing spike train metrics

This work presents two kernels which can be applied to sets of spike times. This allows the use of state-of-the-art classification techniques to spike trains. The presented kernels are closely related to several recent and often used spike train metrics. One of the main advantages is that it does not require the spike trains to be binned. A high temporal resolution is thus preserved which is ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 24 8  شماره 

صفحات  -

تاریخ انتشار 2012